http://www.ruige.com 2017.04.28

Ruige PCC 色彩管理软件

操作说明 V2.1

PCC是RUIGE与SpectraCal联合开发的专业监视器色彩管理 软件。液晶监视器在使用一段时间后(一般为 3-6 个月),就会出现 不同程度的色彩飘移。因此需要定期为监视器进行色彩校准,以确 保色彩还原的准确性,尤其是用于后期调色的监视器,则更有必要。 用户可使用 PCC 专用色彩管理软件,对 TL-B2400HD 广播级监视 器进行自动校准,快速校准时间仅需 8 分钟。

2013 年, RUIGE 与 Spectracal 公司在监视器专业色彩校准方面,开展了全方位的技术合作。开发出了专业色彩校准系统-PCC,并成功运用在了 RUIGE 新一代的 P 和 B 系列监视器中。从而开启了我国专业监视器产品全面进入 3D-LUT 时代的新篇章。

CalMAN for Ruige PCC 软件操作说明

---校色系统软件平台安装

一、软件运行环境

- Windows Vista® 或更高版本(推荐 Windows 7® 或更高版本)
- 2GHz 的处理器(推荐: 2GHz 双核处理器或以上)
- 2GB的内存(推荐: 4GB内存)
- Microsoft® .NET Framework 4.6 或以上
- 二、软件与驱动介绍
 - 1. 运行安装: "CalMAN2016R2_Ruige_572RC1.exe"

2. 为了自动安装适应当前版本的 Microsoft .NET Framework v4.6,安装过程中请保持 网络连接,许可激活过程需要连接 ID 服务器 (请提前检查网络是否可以正常使用)。

- 三、软件安装过程介绍
 - 1) 校色软件安装

按钮

. . .

Step1. 双击校色软件安 装包.exe 程序,出现右图 Step2. 勾选右图红色方 框选项,点击"Install"按钮 Step3.勾选右图红色方框 选项(安装 Client3),点击"Install"

CM						
End Us	er License	Agreemen	t (EULA)	for Call	IAN	
Please carefu using limita not ac	read this lly before the licens tions and cept these	a license using th sed softwa condition license	document e licens re you a s of thi terms, p	(the "li ed softwa ccept the s license romptly e	icense") are. By e . If you erase or	do ,
		202		84 14 151.	and the state	19

🛃 CalMAN Client 3 Setup		날 CalMAN Client 3 Setup	
	Please read the CalMAN Client 3 License Agreement	Installing CalMAN Client 3	SpectraCal
SpectraCal	End User License Agreement (EULA) for CalMAN Client 3 Please read this license document (the "license") carefully before using the licensed software. By using the licensed software you accept the limitations and conditions of this license. If you do not accept these license terms, promptly erase or otherwise destroy the unused software and I accept the terms in the License Agreement	Please wait while the Setup Wizard installs CalMAN Client 3. Status: Configuring Windows Firewall	
Prin	nt Back Install Cancel	Back	Next Cancel

直到出现左图,点

击"Close" 按钮

3) 许可 License 安装 Step1. 双击桌面 "CalMAN 5 for Ruige PCC" 图标,出现右图 Step2. 此时弹出窗口 "Enter License",将许可证序列码,粘 e PCC 贴入"New License"一栏(License ID 和 License Password) - - × Enter License 点击"Activate Online"按 **Currently in Evaluation Mode** 钮添加许可。 **Existing Licenses** CalMAN Trial Evaluation Step3. 出现如下窗口,点 New License 击"确定"按钮, License ID 154 License Password 392C874M te Online Get License Continue in Evaluation Mod X CalMAN for Ruige License Added Successfully 确定

注释:许可 License 激活过程计算机一定要联网,否则将无法激活。

----监视器的色彩校准分析与检测

一、检测及校准环境要求

1. 监视器应在测量开始前工作(预热)30分钟以上,以使显示器/监视器性能达到稳 定状态

2. 为使测量结果更加准确,检测应在暗室中进行,杂散光照度≤1 lux

注:如是日常校准,请在具体使用环境下完成监视器校准。

- 二、硬件设计介绍
 - 1.色度仪(色彩传感器)

功能:通过仪器的感光器件,从显示设备的成像介质上提取原始色彩信息,然后通过 USB 电缆将数据回传给校色主机,为之后的校准分析做数据采集。

注意事项: a、校色请仔细检验感光部分是否存在灰尘、碎屑等异物,如有请及时 使用柔性材料予以清楚

b、使用过程注意轻拿轻放、严禁拉扯拖拽线缆、使用过后请及时收起 防护罩

2. 具备 LUT 加载的瑞鸽监视器 (P2150HD 推荐)

功能:通过 USB 电缆接收主机指令,监视器同步产生测试数据(图像)。

三、硬件连接与配置

1. 设备连接

按上图所示连接设备

- 1) 将 USB 电缆 B 型口连接至监视器,并将 A 型插口连接至电脑
- 2)将色度仪连接至电脑 USB 接口,并将其检测面朝下置于监视器液晶面板中央, 为使测试结果更加准确,请将其紧贴于监视器液晶面板
- 3) 监视器恢复出厂设置
- 2. 配置硬件

双击打开软件 CalMAN for Ruige PCC, 弹出启动界面

软件启动中……

弹出如下窗口

CalMAN 5 for Ruige PCC CalMAN for Ruige 60 Days Remaining			▼
CalMAIN for Runce	RUIGE	Simulated Meter Random Test Mode Source	Tirect Display Control 🔪 🔕 👔 🕚
		74	
鱼彩指标检查		日日	示哭応准
		ATTERNO.	
致力于图像道真度 SpectraCal从事广播,制作,后期制作,娱乐,商业。公司,政府,因 兰日至上时常常国动的变化值在计算们进行准确的工作小的目标。	\$学领域的电子图像的准确度优化。同时为了达到这个优化目标,我们考虑	\$到显示器设备 /投影 仪的变化,信号源:6	的变化,环境的变化,人的感知的不同的变化,
开口行一起的某号我与我们通信户交机进行了差涉以正式已是可以正式已分析。 SpectraCal团队专注于显示计量以及精准检测,以及通过研发软硬件制 工作流程的每一步都有屏幕说明未完成视屏校正处理,完成校正显示	¥决方案未优化显示图像,从初学者到专家,都可以在他们各自的环境下优 的每一步以达到国际标准,确保你所看到的图像内容就是你原始图像内容.	1.化視屏和图像的影像准确度。 。	
或者点击工作界面左上	:角图标" CalMAN Ru	ICE 👽 ",选:	译 "Open WokFlow

Template" → "Ruige PCC (chinese)", 具体操作步骤如下图

注: 国外客户请选择 "Ruige PCC (English)"

进入 Ruige PCC 色彩管理界面,中文界面更加便于中国客户的操作与理解。

CalMAN 5 for Ruige PCC CalMAN for Ruige 60 Days Remaining			🔻 🔮 🗙
CalMAN for Ruice 👻			
History 1 •	RUIGE	Simulated Meter Source Direct Display Contro	
	Ruige 色彩管理操作平	F台	
色彩指标检查	监视器3D-LUT校准	电脑显示器校准	
致力于图像逼真皮 SpetraCal从事广播,制作,后期制作,损乐。商业,公司,政府 并且将上述因繁导致的变化值作为我们进行准确校正优化的目标。 SpetraCal团队专注于显示计量以及精准检测,以及通过研发软硬 工作流程的每一步都有屏幕说明来完成视屏校正处理,完成校正显	医学领域的电子图像的准确度优化。同时为了达到这个优化目标,我们考定 +解决方案来优化显示图像,从初学者到专家,都可以在他们各自的环境下(示的每一步以达到国际标准,确保你所看到的图像内容就是你原始图像内容	處到显示器设备/投影仪的变化,信号源的变化,环境的变化,人的肩 优化视屏和图像的影像准确度。 F.	。 缺的不同的变化。

请选择"监视器 3D-LUT 校准",先行完成监视的校准,之后再进行"色彩指标检查"。

1) 配置"色度仪"(以 SpectraCal C6 为例)

CalMAN 5 for Ruige PCC CalMAN for Ruige 60 D	ays Remaining			👻 🔮 🗙
History 1 +			Simulated Meter Rindom Test Mode	Direct Display Control 👻 🔅 ? 🕚
色彩校正仪设备连接 1.确保指示灯都显示正常显示绿色 2.按按键Next继续				
	●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●	tep1 🐢	Simulated Meter Random Test Mode	-
	信号发生器	~ •	Source	.
			Open Pattern Window	
	校准LUT存储设备	~ 2	Direct Display Control	<u> </u>
				·
la seconda de la constante de				« Back Next »

Step1. 单击"色度仪"按钮,弹出如下窗口;

系统将自动完成色彩分析仪的查找并自动连接,完成后 选项框左侧的状态显示由黄色变为绿色(如下图圆圈 所示),

Step2. 根据待校准监视器液晶面板规格参数选择背光类型

2) 配置"信号发生器"信号源(以 Ruige 监视器为例)

CalMAN 5 for Ruige PCC CalMAN for Ruige 60 Da	ays Remaining				👻 🦉 🗙
History 1 +			SpectraCal C6 LCD (LED White)	Direct Display Control	
色彩校正仪设备连接					
1. 确保指示灯都显示正常显示绿色					
2. 按按键Next继续					
	色度仪	?	SpectraCal C6		
			LCD (LED White)	•	
	信号发生器 🔶 🖇	tep1 💎 🔪 👘	Source		
			Full 100%	*	
			Open Pattern Window		
	校准L U T存储设备	~~	Direct Display Control	bl	
				-	
				Back Back Back Back Back Back State Stat	Next 📎

Step1. 点击"信号发生器",弹出如下窗口;

Find Source			× 1	
Source				
Manufacturer:	Ruige			— Sten2
Model:	Ruige (USB)		•	Jicpz
		Connect - Step3		

Step2. 在左侧选项框中单击"Manufacturer"选项,在下拉菜单中选择"Ruige", 单击"Model"选项,在下拉菜单中选择"Ruige (USB)"。

Step3. 单击"connect"按钮,系统自动完成信号发生器连接。

Find Source		×
	Searching For Ruige Ruige (USB)	
	Cancel	

完成后选项框左侧的状态显示由黄色变为绿色(如下图圆圈所示)

3) 配置"校准 LUT 存储设备"LUT 文件生成(以 Ruige 监视器为例)

Step1. 点击"校准 LUT 存储设备", 弹出如下窗口;

Find Display		2	
Display			
Manufacturer:	Ruige		- Ston2
Model:	Ruige (USB)		Jiepz
		Connect 🔫	-Step3

Step2. 在左侧选项框中单击"Manufacturer"选项,在下拉菜单中选择"Ruige", 单击"Model"选项,在下拉菜单中选择"Ruige(USB)"。

Step3. 单击 "connect" 按钮,系统自动完成信号发生器连接,完成后选项框左侧的状态显示由黄色变为绿色(如下图圆圈所示)

完成上述设置后,点击窗口界面右下角" Next »"按钮进入下一步设置。

4) 设定色彩标准

CalMAN 5 for Ruige PCC CalMAN for Ruige 60 Days R	lemaining		- • ×
History 1 +		SpectraCal C6 LCD (LED White)	
免 必行准没完			
巴杉尔住汉庄			
色域选择	rec.709/sRGB	New/Edit - Step1	
色温设定	D65 -	← Step2	
Gamma设定	ITU BT.1886 🗸 🗸	- Step3	
			ack Next ®
			INCAL O

Stepl. 在弹出的菜单中单击"色域选择"按钮

Step2. 在弹出的菜单中单击"色温设定"按钮

Step3. 在弹出的菜单中单击"Gamma 设定"按钮

建议: -- 高清电视色域标准 "rec.709/SRGB" -- 4K 电视色域标准 "rec.2020" -- 电影色域标准 "DCI P3" -- Adobe 公司色域标准 "Adobe RGB" -- 标清电视色域标准 "SMPTE-C"

在 "Gammma Formula" 的下拉菜单中根据需要选择相应的伽马曲线

建议: -- 监视器校准"ITU BT. 1886"

-- PC 校准"sRGB"

-- 用户自定义 "Power"

完成上述设置后,点击窗口界面右下角" Next »"按钮进入下一步设置。

四、校色过程介绍

Calman 5 for Ruige PCC Calman for Ruige 60 Days Remaining	
CalMAN tor Ruise 🕥	
History 1 🔹	SpectraCal C6 LCD (LED White) C Ruige Generator
测量/记录显示性能	CIE 1976 ư√
用ColorChecker图表和Gamma值一起来反映测量并记录的显示性能,这将为您对那些不包含在CUBE校正的 点的显示提供一个准确的评估	0.55-
点击按键 <i>连续读取</i> 来读取GAMMA 和ColorChecker的显示响应	
点击按键 <i>下一步,</i> 完成基于这些读回数据的显示性能评估,Advanced Data作为评估参考值	0.45
RGB Balance	0.4
20	0.35-
	0.3
-10	0.251
-20 40 60 80 100 120 140 160 180 200 220	0.15-
15 ₇ DetaL	0.1-
10	0.05-
5	RGB Triplet: 235, 235, 235
	DettaE 2000
Advanced Performance Data	Step1
Gamma DeltaL Max: 0 ColorChecker Max dE2000: 0	s
Gamma DeltaL Avg: 0 ColorChecker Avg dE2000: 0	
16 38 60 82 104 126 147 169	191 213 235 Sack Next »
Stepl.单击软件界面右下角的红色" 👩	"图标,完成校色前原始参数读取,
· · · · · · · · · · · · · · · · · · ·	

以便生成"校色前后对比报告"。

Step2. 单击界面右下角" Next 》"图标进入"目标亮度"设定界面 Step3. 进入"目标亮度"设定界面,调整监视器背光参数设置,单击" 9"按 钮,读取当前白点亮度最大值、最小值以及对比度数值。

CalMAN 5 for Ruige PCC CalMAN for Ruige 60 Days Remaining		👻 🖷 🗡
CalMAN for Mulce		
History 1 +	SpectraCal C6 Ruige Generator Rt LCD (LED White)	ige 🝷 📧 😂 ? 🔾
目标亮度		
通过背光控制,像素亮度控制,面板驱动控制,或者光圈控 制达到目标亮度,对于Cube校准,请保证显示设备的对比度 至少为500		
不要用对比度调节旋钮来做这个调整		
	Max Luminance: 101.88 cd/m ²	
	Min Luminance: 0.17 cd/m ²	
	Contrast Ratio 587:1	
		▶ 🖻 ∞ 🙃 🔘
16 235		DACK NEXL "

注:由于监视器硬件差异以及参数调整范围设置等不同,请调整背光参数,使白点最大 亮度值控制在 100-120cd/m²范围内。

Step4. 单击窗口右下角" Next 》"按钮,进入"3D 查找表校准"界面, 点击" 🥑 "按钮, 弹出"AutoCal Setup"窗口。 CalMAN 5 for 8 Ruige Ge SpectraCal C6 LCD (LED White) Ruige History 1 + 3D 查找表校准 点击自动校正按键以校准内部3D LUT Average DeltaE 2000: 12.1 Max dE 2000: 12.3065 Selected Datapoint: Measured x: 0.3213 Target x: 0.3127 Measured y: 0.3178 Target y: 0.329 Measured Y: 123.873 Target Y: 123.873 dE 2000: 12.3 -191 169 147 126 -104 -82 -60 -38 Step4 • • • 8 5 CalMAN 5 for Ruige PCC CalMAN for Ruige 60 Days History 1 + SpectraC LCD (LED 3D 查找表校准 点击自动校正按键以校准内部3D LUT Average DeltaE 2000: 13.1 Hardware Properties Max dE 2000: 13.3437 Selected Da ntrol: Size: alLUT: 26 Poir 10 Bits Measured x: 0.3231 Measured y: 0.3171 Pattern Delay Measured Y: 122.499 Delay 0.25 Optimize dE 2000: 13.3 erage 1.66 se Cube 3D LUT Settings tion Type: Lightning LUT 213 191 169 147 126 104 82 60 Video Range: SMPTE+ (16-255) -OK Cancel

Step5. 单击 "Optimize" 按钮, 自动进行延时识别操作。

Step6. 单击下拉窗口"▼"按钮,选择校准类型。

三个选项: Lightning LUT ---极速模式、IR Profile (time based) ---以 时间为基准、IR Profile (point based) ---以采样点为基准 Step7. 选择 "Video Range", 默认 SMPTE+ (16-255)。

Back

Next

自动校色过程

单击弹出窗口右下角"OK"按钮,正式进入校色过程(Display Update in Progerss)。

等待若干时间……(此时校色时间的长短则取决于校准前设置时间、采样点等 设置)

如果校色过程无误则跳出校色成功窗口,提示"3D LUT calibration completed

successfully",之后点击弹出窗口"确定"按钮。

CalMAN 5 for Ruige PCC CalMAN for Ruige 60 Day	s Remaining						• ₽ X
CalMAN for NUICE							
History 1 +				Spectra LCD (LE	Cal C6 D White)	erator 😴 Ruige	
3D 查找表校准 点击自动校正按键以校准内部30 LUT Average DeltaE 2000: 8.2 Max dE 2000: 16 2714			0.55-		CIE 1976 ư√		
Selec	ted Datapoint.				0		
Measured x: 0.1509 Measured y: 0.0402 Measured Y: 6 444	Tar Tar Tar	get x: 0.15 get y: <u>0.06</u>	0.45-	×			
dE 2000: 8.1	Deta£ 2000		LUT calibration completed 1 ne elapsed: 0.07/27 al Reads: 101	uccessfully. 读定	02 025 03	0.35 0.4	045 0'5 055
					0.2 0.2 0.3		₩ ∞ 0 0
Ramp 16 255 16 16 255	77 16 255	136 16 255	188 16 255	255 16 255		🔍 Ba	ck Next 📎

数据保存路径

根据生成 **3D LUT** 文件保存路径,找到对应相关数值表文件。例如生产文件默认路径为: Administrator ▶ 我的文档 ▶ SpectraCal ▶ CalMAN 5 for Ruige PCC ▶ LUTs

🕥 - 🕌 🕨 计算机 🕨	Win7 (C:) > 用户 > Administrator > 我的	文档 → SpectraCal → Ca	IMAN 5 for Busine	ess ▶ LUTs ▶	-	▼ 4y 搜索LUTs	ـــــــــــــــــــــــــــــــــــــ
文件(E) 编辑(E) 查看(V)	工具(1) 帮助(1)						
组织 ▼ 包含到库中 ▼	共享 🔻 刻录 新建文件夹) · · · · · · · · · · · · · · · · · · ·
☆ 收藏夹	名称	修改日期	美型	大小			^
퉬 2345下载	0_Ruige.3dl	2016/3/4 15:52	3DL 文件	245 KB			
🚺 下载	0_Ruige	2016/3/4 15:52	CSV 文件	599 KB			E
📃 桌面	Profile 2016341545.cpfx	2016/3/4 15:50	CPFX 文件	786 KB			
1 最近访问的位置	Profile 2016341450.cpfx	2016/3/4 14:57	CPFX 文件	766 KB			

将生产的 3D LUT 文件通过硬件升级接口载入被校正设备存储单元中,加载完成。 (瑞鸽铝壳系列监视以及魔盒 BM/A-100 自动完成载入)

备注:监视出厂校准采用"IR Profile (point based)"中 1000 点的采样为准,Video Range 选择"SMPTE+(16---255)"完成 Ruige 监视器的校准。

此时需要操作软件打开 LUT 功能

点击"Ruige Generator"打开扩展窗口,勾选"Enable 3D LUT"后的方框选项,如 下图红色方框标识处。

校准LUT功能打开: Enable 3D LUT X

校准 LUT 功能关闭: Enable 3D LUT

CalMAN 5 for Ruige PCC CalMAN for Ruige 59 Days Remaining	
History 1 🔹	SpectraCal C6 LCD (LED White)
测量/记录校准后显示性能	Source Settings
从3447742357777777777777777777777777777777	Source
行检验	0.55- Ruige Generator Find Source
点击 <i>连续读取</i> 按键,记录校正后的gamma和颜色检测值的显示性能	0.5- Source Information
	0.45- Duin
	0.4-
RGB Balance	Triplet support: Full triplet support Disconnect
10	Sottings
	0.3- Jettings
.10	0.25- Window Size Full 100%
	0.2 ⁻ Enable 3D LUT
-20 40 60 80 100 120 140 160 180 200 220	0.15- Specialty Patterns
15 DeltaL	0.1
10	RGB Triplet: 235, 235, 235
s	0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0 16 38 60 82 104 126 147 169 191 213 235	DeltaE 2000
Advanced Performance Data	
Gamma DeltaL Max: 0 ColorChecker Max dE2000: 0	
Gamma DeltaL Avg: 0 ColorChecker Avg dE2000: 0	o-
والمعارجي بمعارجي معارجي والمعارجي	
16 38 60 82 104 126 147 169	191 213 235 Sack Next »

注:如是魔盒,可以直接按下对应 LUT 按钮,打开 LUT 功能,对应 LED 指示灯亮起,关闭 LUT 功能,对应 LED 指示灯熄灭。

"

Step1. 单击窗口右下角"Next"按钮,进入"检验校正结果"界面,点击界面右下角" 间 "按钮读取校正后数据。

Step2. 单击窗口右下角"Next"按钮,完成整个校色过程,之后点击界面右下角 Report "按钮,生成校色前后数据对比报告。

Step3. 点击下拉窗口 "Export to PDF" 按钮, 弹出另存窗口。

在红色方框 1 中设定 PDF 文档另存路径, 方框 2 中重命名文件, 之后点击"保存"按 钮完成 PDF 校色文档的保存。保存完毕之后, 点击界面右上角" ×", 退出校准报告界 面。

S CalMAN 5 for Ruige PCC CalMAN for Ruige	e 293 Days Remaining				_ 🔍 X
5 另存为			_]		
〇〇〇 🗸 🌙 🔸 Administrator 🔸 我的文档	≝ → SpectraCal → CalMAN 5 for Ruige PCC → Reports	• • • • • • • • • • • • • • • • • • •	Ruige Generator	Ruige	
组织 ▼ 新建文件夹		······································			8
☆ 約覇実 名称	^ 修改日期 类型	大小			
1 2345下载	いたと物末を併用剤があ				
🚺 下戦 💡	1支制。1350年12月17月。		Invian		
三 桌面			.uuio –		
3 最近访问的位置					
5m					
1 计算机					
💒 Win7 (C:)					
— 龄仲 (D-)			▋ ->-₩= -		
文件名(I): Color Cube (3D LUT) R	eport-2016_2_29		」 刀性 Z		
		· · · · · · · · · · · · · · · · · · ·			
		保存(5) 取消			
		Meter Serial: 00101958			
	SOURCE	Ruige Generator			
		Model: Ruige (USB)			
		Info:			
	IMAGE PROCESSOR	Ruige			
	INAGE FROCESSON	Madels Builder (USB)			
		Type:			
		lofo1.			

五、色彩指标检查

CalMAN 5 for Ruige PCC CalMAN for Ruige 60 Days Remaining			¥ 🛃 A
CalMAN for Ruige 😴			
History 1 +		SpectraCal C6 LCD (LED White)	
	Ruige 色彩管理操作平	谷	
色彩指标检查	监视器3D-LUT校准	电脑显示器校》	隹
致力于图像逼真度			
SpectraCal从事广播,制作,后期制作,娱乐,商业,公司,政府,医 并且将上述因素导致的变化值作为我们进行准确校正优化的目标。	学领域的电子图像的准确度优化。同时为了达到这个优化目标, 我们考虑	\$到显示器设备/投影仪的变化,信号源的变化,环境的变	化,人的感知的不同的变化,
SpectraCal团队专注于显示计量以及精准检测, 以及通过研发软硬件解 工作流程的每一步都有屏幕说明未完成视屏校正处理,完成校正显示	决方案未优化显示图像,从初学者到专家,都可以在他们各自的环境下优 的每一步以达到国际标准,确保你所看到的图像内容就是你原始图像内容。	化祝屏和图像的影像准确度。 •	

Step1. 单击 "色彩指标检查"按钮,进入"色彩显示检查选项"界面(如下图 所示),根据检测需要选择相关检测项目,点击进入对应检测界面

CalMAN 5 for Ruige PCC CalMAN for Ruige 59 Days Remaining			🔻 💾 🗙
History 1 🔹		SpectraCal C6 LCD (LED White)	uige 👻 📴 😧 ? 🔇
色彩显示检查选项			
 Gamma/灰度	色域检查		
Step2			
		·	Back Next 📎

Step2. 单击 "Gamma/灰度"按钮,进入"Gamma/灰度"界面(如下图所示), 点击界面右下角 "Read series"按钮(图标 📴),读取当前数据,等 待检测完成(红色方框)

检测完成后图示如下:

检测数据说明

1) dE Average

反映从标准黑到标准白之间(10%增幅)各级灰度状态下的测量色度与标准 色度间偏差的平均值。作为技术级监视器,其偏差平均值不应超过3,而作为监 看级监视器,其偏差平均值小于6属于合理范围。对应于柱状图中,各柱图高度 越低越好,最好不要超过红线,低于黄线属于可接受范围,低于绿线则为较理想 状态。

2) CCT Avg/RGB Balance

反映从标准黑到标准白之间(10%减幅)各级灰度状态下测得的色温平均值, 其数值越接近于 6500 越好(Rec. 709 标准规定标准色温值为 6500K)。对应于图 表中,R、G、B 三条曲线分别越接近于中间的零刻度线越好,哪条曲线偏离的多 则说明该颜色与标准色度差异较大 Correlated Color Temperature。

3) Total Gamma

反映的是伽马曲线的平均数值,这个数值越接近于标准数值 2.2 越好。对应 于图表中,测量曲线(灰色)与标准响应曲线(黄色)的贴合度越高越好。

Step4. 点击界面右下角 "Read series" 按钮 (图标 回),读取当前数据,等待 检测完成 (红色方框)

检测完成后图示如下:

检测数据说明

1) Delta E 2000

反映在三基色、三补色及白色状态下,检测数据与标准数值的偏差,对应于柱状图中各柱图不应超过10,低于5均为合理状态,低于3为较理想状态。

2) 亮度/色度/色相偏离情况

对于三个柱状图中,分别表示选定色值的亮度、色度、以及色相的偏离情况, 柱图越接近于中间的零刻度线越好,超出或低于零刻度线的高度,分别表示正偏 差和负偏差的程度。

3) 原始色域

连接图中三角形边线的六个检测点(圆点)所组成的三角形覆盖的面积即为 该监视器的原始色域。如果原始色域无法覆盖目标色域(各方形点连线组成的三 角形),则无论通过什么手段调整,均无法得到准确的色彩还原。

4) 当前状态参数

反映当前选定在色度图中的色值坐标(x y),以及对应选定的亮度值,亮度 公制单位是 cd/m²(也成 Nit),英制单位是 fL,换算关系: 1cd/m²=0.2919fL。

5) RGB Balance

反映在三基色、三补色及白色状态下状态下 R、G、B 三原色的平衡度,以及 对应相关坐标值和偏离值。 Step5. 单击窗口界面右下角 " Next » "按钮,进入"饱和度/色相"选

项界面(如下图所示)

Step6. 点击上图界面右下角"Read series"按钮(图标 👩),读取当前数据,等待检测完成(红色方框)

如果重新进行"色彩指标检查"或"监视器 3D-LUT 校准",请选择"NEW+"选项。 仅需要测试"色彩指标检查",请点击"Check Options"选项。

检测数据说明

1) Delta E 2000

反映在三基色、三补色分别在 20%、40%、60%、80%、100%、以及白色(0 和 100%)状态下,检测数据与标准数值的偏差,对应于柱状图中各柱图不应超 过 10,低于 5 均为合理状态,低于 3 为较理想状态

2) 亮度/色度/色相偏离情况

对于三个柱状图中,分别表示选定各个饱和度色值的亮度、色度、以及色相 的偏离情况,柱图越接近于中间的零刻度线越好,超出或低于零刻度线的高度, 分别表示正偏差和负偏差的程度

3) 原始色域

反映在三基色、三补色分别在 20%、40%、60%、80%、100%、以及白色(0 和 100%)状态下,各饱和度在色域图中的具体位置,实际检测点(圆点)接近 目标点(方框),则此测试点饱和度显示正确。如果偏离目标值方框过远,在对 应 Delta E 2000 中偏离数值超过 10 则无法表现正常饱和度,也同样会影响监看 画面的显像效果。因此原始色域完全覆盖目标色域(各方形点连线组成的三角 形),但各个饱和度色值仍然不准确,同样无法得到准确的色彩还原。

4) 当前状态参数

反映当前选定在色度图中的色值坐标(x y),以及对应选定的亮度值,亮度 公制单位是 cd/m²(也成 Nit),英制单位是 fL,换算关系: 1cd/m²=0.2919fL。

5) **RGB Balance**

反映在三基色、三补色分别在 20%、40%、60%、80%、100%、以及白色(0 和 100%)状态下 R、G、B 三原色的平衡度,以及对应相关坐标值和偏离值。